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 28.1 Introduction 

 The genetic algorithm (GA) is one of a number of computer programming 
techniques loosely based on the idea of natural selection. The idea of 
applying principles of natural selection to computing is not new. By 1948, 
Alan Turing proposed “genetical or evolutionary search” (Turing 1948). 
Less than two decades later, H.J. Bremmermann performed computer 
simulations of  “optimization through evolution and recombination” 
(Eiben and Smith 1998). It was John Holland who coined the term, genetic 
algorithm (Holland 1975). However, the GA was not widely studied until 
1989, when D.E. Goldberg showed that it could be used to solve a 
significant number of difficult problems (Goldberg 1989). Currently, many 
of these threads have come together under the heading evolutionary computing 
(Luger 2009, Chapter 12). 

             28.2 The Genetic Algorithm: A First Pass 

 The Genetic Algorithm is based loosely on the concept of natural 
selection. Individual members of a species who are better adapted to a 
given environment reproduce more successfully. They pass their 
adaptations on to their offspring. Over time, individuals possessing the 
adaptation form a new species that is particularly suited to the 
environment. The genetic algorithm applies the metaphor of natural 
selection to optimization problems. No claim is made about its biological 
accuracy, although individual researchers have proposed mechanisms both 
with and without a motivating basis from nature.     

A candidate solution for a genetic algorithm is often called a chromosome. 
The chromosome is composed of multiple genes. A collection of 
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chromosomes is called a population. The GA randomly generates an initial 
population of chromosomes, which are then ranked according to a fitness 
function (Luger 2009, Section 12.1). 

Consider an example drawn from structural engineering. Structural 
engineers make use of a component known as a truss. Trusses come in 
many varieties, the simplest of which should be familiar to anyone who has 
noticed the interconnected triangular structures found in bridges and 
cranes. Figure 28.1 is an example of the canonical 64-bar truss (Ganzerli et 
al. 2003), which appears in the civil engineering literature on optimization. 
The arrows are loads, expressed in a unit known as a Kip.  Engineers 
would like to minimize the volume of a truss, taken as the cross-sectional 
area of the bars multiplied by their length.    

To solve this problem using a GA, we first randomly generate a population 
of trusses. Some of these will stand up under a given load, some will not. 
Those that fail to meet the load test are assigned a severe penalty. The 
ranking in this problem is based on volume. The smaller the truss volume, 
after any penalty has been assigned, the more fit the truss. Only the fittest 
individuals are selected for reproduction. It has been shown that the truss 
design problem is NP-Complete (Overbay et al. 2006). Engineers have 
long-recognized the difficulty of truss design, most often developing good 
enough solutions with the calculus-based optimization techniques available 
to them (Ganzerli et al. 2003). 

By the late nineties, at least two groups were applying genetic algorithms to 
very large trusses and getting promising results (Rajeev and 
Krishnamoorthy 1997), (Ghasemi et al. 1999).  Ganzerli et al. (2003) took 
this work a step further by using genetic algorithms to optimize the 64-bar 
truss with the added complexity of load uncertainty. The point here is not 
simply that the GA is useful in structural engineering, but that it has been 
applied in hundreds of ways in recent years, structural engineering being an 
especially clear example. A number of other examples, including the 
traveling salesperson and SAT problems are presented in Luger (2009, 
Section 12.1). The largest venue for genetic algorithm research is The 
Genetic and Evolutionary Computation Conference (GECCO 2007). Held in a 
different city each summer, the papers presented range from artificial life 
through robotics to financial and water quality systems.  

Despite the breadth of topics addressed, the basic outline for genetic 
algorithm solvers across application domains is very similar. Search 
through the problem space is guided by the fitness-function. Once the fitness-
function is designed, the GA traverses the space over many iterations, 
called generations, stopping only when some pre-defined convergence 
criterion is met. Further, the only substantial differences between one 
application of the GA and the next is the representation of the 
chromosome for the problem domain and the fitness function that is 
applied to it. This lends itself very nicely to an object-oriented 
implementation that can be easily generalized to multiple problems. The 
technique is to build a generic GA class with specific implementations as 
subclasses.   
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WordGuess 
Example 

Consider a simple problem called WordGuess (Haupt and Haupt 1998). The 
user enters a target word at the keyboard.  The GA guesses the word. In 
this case, each letter is a gene, each word a chromosome, and the total 
collection of words is the population. To begin, we randomly generate a 
sequence of chromosomes of the desired length. Next, we rank the 
generated chromosomes for fitness. A chromosome that is identical with 
the target has a fitness of zero. A chromosome that differs in one letter has 
a fitness of 1 and so on. It is easy to see that the size of the search space 
for WordGuess increases exponentially with the length of the word. In the 
next few sections, we will develop an object-oriented solution to this 
problem.   

Suppose we begin with a randomly generated population of 128 character 
strings. After ranking them, we immediately eliminate the half that is least 
fit. Of the 64 remaining chromosomes, the fittest 32 form 16 breeding 
pairs.  If each pair produces 2 offspring, the next generation will consist of 
the 32 parents plus the 32 children. 

       
Figure 28.1    A system of trusses to be optimized with a set of genetic 

operators. 

Having decided who may reproduce, we mate them. The GA literature is 
filled with clever mating strategies, having more or less biological 
plausibility. We consider two, TopDown and Tournament. In TopDown, the 
fittest member of the population mates with the next most fit and so on, 
until the breeding population is exhausted.  Tournament is a bit more 
complex, and slightly more plausible (Haupt and Haupt 1998). Here we 
choose a subset of chromosomes from the breeding population. The fittest 
chromosome within this subset becomes Parent A. We do the same thing 
again, to find its mate, Parent B. Now we have a breeding pair. We 
continue with this process until we have created as many breeding pairs as 
we need.  
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Mating is how each chromosome passes its genes to future generations. 
Since mating is an attempt to simulate (and simplify) recombinant DNA, 
many authors refer to it as recombination (Eiben and Smith 2003). As with 
pairing, many techniques are available. WordGuess uses a single technique 
called Crossover. Recall that each chromosome consists of length(chromosome) 
genes. The most natural data structure to represent a chromosome is an 
array of length(chromosome) positions. A gene—in this case an alphabetic 
character—is stored in each of these positions.  Crossover works like this: 

1. Generate a random number n, 0 <= n < 
length(chromosome).  This is called the Crossover Point.  

2. Parent A passes its genes in positions 0 … n to Child 1. 

3. Parent B passes its genes in positions 0 … n to Child 2. 

4. Parent A passes it genes in positions n + 1 … 
length(chromosome – 1) to the corresponding positions in 
Child 2. 

5. Parent B passes its genes in positions n + 1 … 
length(chromosome – 1) to the corresponding positions in 
Child 1 

Figure 28.2 illustrates mating with n = 4.  The parents, PA and PB produce 
the two children CA and CB. 

After the reproducing population has been selected, paired, and mated, the 
final ingredient is the application of random mutations. The importance of 
random mutation in nature is easy to see.  Favorable (as well as 
unfavorable!) traits have to arise before they can be passed on to offspring. 
This happens through random variation, caused by any number of natural 
mutating agents. Chemical mutagens and radiation are examples. Mutation 
guarantees that new genes are introduced into the gene pool. Its practical 
effect for the GA is to reduce the probability that the algorithm will 
converge on a local minimum. The percentage of genes subject to mutation 
is a design parameter in the solution process.   

The decision of when to stop producing new generations is the final 
component of the algorithm. The simplest possibility, the one used in 
WordGuess, is to stop either after the GA has guessed the word or 1000 
generations have passed. Another halting condition might be to stop when 
some parameter P percent of the population is within Q standard 
deviations of the population mean.   

 

Figure 28.2    Recombination with crossover at the point n = 4. 

 

PA: CHIPOLTE PB: CHIXLOTI 

 

CA: CHIPLOTI CB: CHIXOLTE 
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The entire process can be compactly expressed through the while-loop: 
GA(population) 

{   

 Initialize(population); 

 ComputeCost(population); 

 Sort(population); 

 while (not converged on acceptable solution) 

 { 

  Pair(population); 

  Mate(population); 

  Mutate(population); 

  Sort(population); 

  TestConvergence(population); 

 } 

} 

28.3 A GA Implementation in Java 

 WordGuess is written in the Java programming language with object-
oriented (OO) techniques developed to help manage the search 
complexity. An OO software system consists of a set of interrelated 
structures known as classes. Each class can perform a well-defined set of 
operations on a set of well-defined operands. The operations are referred 
to as methods, the operands as member variables, or just variables.   

The Class 
Structure 

The classes interrelate in two distinct ways. First, classes may inherit 
properties from one another.  Thus, we have designed a class called GA. It 
defines most of the major operations needed for a genetic algorithm. 
Knowing that we want to adapt GA to the problem of guessing a word 
typed at the keyboard, we define the class WordGuess. Once having 
written code to solve a general problem, that code is available to more 
specific instances of the problem. A hypothetical inheritance structure for 
the genetic algorithm is shown in Figure 28.3, where the upward pointing 
arrows are inheritance links. Thus, WordGuess inherits all classes and 
variables defined for the generic GA. 

Second, once defined, classes may make use of one another. This 
relationship is called compositionality. GA contains several component classes: 

• Chromosome is a representation of an individual population 
member. 

• Pair contains all pairing algorithms developed for the 
system. By making Pair its own class, the user can add new 
methods to the system without changing the core components 
of the code. 

• Mate contains all mating algorithms developed for the 
system.   

• SetParams, GetParams, and Parameters are 
mechanisms to store and retrieve parameters. 
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• WordGuessTst sets the algorithm in motion. 

Finally, class GA makes generous use of Java’s pre-defined classes to 
represent the population, randomly generate chromosomes, and to handle 
files that store both the parameters and an initial population. GA is 
character-based. A Graphical User Interface (GUI) can be implemented 
with Java’s facilities for GUIs and Event-Driven programming found in 
the javax.swing package (see Exercise 28.3).   

 

Figure 28.3     The inheritance hierarchy for implementing the GA. 

The Class 
Chromosome 

The variables reflect what a class knows about itself. Class Chromosome 
must know how many genes it has, its fitness, and have a representation 
for its genes. The number of genes and the fitness of the chromosome can 
be easily represented as integers. The representation of the genes poses a 
design problem. For WordGuess, a character array works nicely. For an 
engineering application, we might want the chromosome to be a vector of 
floating point variables. The most general representation is to use Java’s 
class Object and have specific implementations, like WordGuess, 
define their own chromosomes (see Exercise 28.4).      

The methods describe what a class does. Class Chromosome must be 
able to set and return its fitness, set and return the number of its genes, 
display its genes, and determine if it is equal to another chromosome.  The 
Java code that implements the class Chromosome follows. 

public class Chromosome 

{ 

 private int CH_numGenes;  

 protected int CH_cost; 

 private Object[] CH_gene;  

 public Chromosome(int genesIn) 

 { 

  CH_numGenes = genesIn; 

  CH_gene = new char[CH_numGenes]; 

 } 
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 public int GetNumGenes() 

 { 

  return CH_numGenes; 

 } 

 public void SetCost(int cost) 

 { 

  CH_cost = cost; 

 } 

  public void SetGene(int index, Object value) 

 { 

  CH_gene[index] = value; 

 } 

  public boolean Equals(String target) 

 { 

  for (int i = 0; i < CH_numGenes; i++) 

  if (CH_gene[i] != target.charAt(i)) 

   return false; 

  return true; 

 } 

} 
Classes Pair 

and Mate 
Chromosomes must be paired and mated. So that we can experiment with 
more than a single pairing or mating algorithm, we group multiple versions 
into classes Pair and Mate. Since pairing and mating are done over an 
entire population, before we define Pair and Mate we must decide upon 
a representation for the population. A population is a list of chromosomes. 
Java’s built-in collection classes are contained in the java.util library 
and known as the Java Collection Framework. Two classes, ArrayList and 
LinkedList support list behavior. It is intuitively easy to conceive of a 
population as an array of chromosomes. Accordingly, we use the class 
ArrayList to define a population as follows: 

ArrayList<Chromosome> GA_pop;  

GA_pop = new ArrayList<Chromosome>();    

The first line defines a variable, GA_pop as type ArrayList.  The 
second creates an instance of GA_pop.   

WordGuess implements a single paring algorithm, TopDown. 
Tournament pairing is left as an exercise. Pair has to know the 
population that is to be paired and the number of mating pairs. Since only 
half of the population is fit enough to mate, the number of mating pairs is 
the population size divided by 4. Here we can see one of the benefits of 
using pre-defined classes. ArrayList provides a method that returns the 
size of the list. The code for Pair follows: 

public class Pair 

{ 

  private ArrayList<Chromosome> PR_pop;  
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  public  Pair(ArrayList<Chromosome> population) 

 { 

  PR_pop = population; 

 } 

 public int TopDown()  

 { 

  return (PR_pop.size() / 4); 

 } 

} 

Class Mate also implements a single algorithm, Crossover. It is slightly 
more complex than Pair. To implement Crossover, we need four 
chromosomes, one for each parent, and one for each child. We also need 
to know the crossover point, as explained in Section 28.2, the number of 
genes in a chromosome, and the size of the population. We now present 
the member variables and the constructor for Mate:   

public class Mate 

{ 

 private Chromosome MT_father,  

  MT_mother,  

  MT_child1,  

  MT_child2; 

 private int  MT_posChild1,  

  MT_posChild2,  

  MT_posLastChild,  

  MT_posFather,  

  MT_posMother,  

  MT_numGenes,    

  MT_numChromes; 

 public Mate(ArrayList<Chromosome> population, 

              int numGenes, int numChromes) 

 { 

  MT_posFather  = 0; 

  MT_posMother  = 1; 

    MT_numGenes   = numGenes; 

  MT_numChromes = numChromes; 

  MT_posChild1  = population.size()/2; 

  MT_posChild2  = MT_posChild1 + 1; 

  MT_posLastChild = population.size() - 1;  

  for (int i = MT_posLastChild;  

    i >= MT_posChild1; i--) 

   population.remove(i); 

  MT_posFather = 0; 

  MT_posMother = 1;  
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 } 
                               // Remaining method implemented below. 

} 
Mate takes a population of chromosome as a parameter and returns a 
mated population. The for-loop eliminates the least fit half of the 
population to make room for the two children per breeding pair.   

Crossover, the only other method in Mate, is presented next. It 
implements the algorithm described in Section 28.2. Making use of the 
Set/Get methods of Chromosome, Crossover blends the 
chromosomes of each breeding pair. When mating is complete, the 
breeding pairs are in the top half of the ArrayList, the children are in 
the bottom half. 

public ArrayList<Chromosome> Crossover( 
 ArrayList<Chromosome> population, int numPairs) 

{ 

 for (int j = 0; j < numPairs; j++) 

 { 

  MT_father =  population.get(MT_posFather); 

  MT_mother =  population.get(MT_posMother); 

  MT_child1 =  new Chromosome(MT_numGenes); 

  MT_child2 = new Chromosome(MT_numGenes);  

  Random rnum = new Random(); 

  int crossPoint = rnum.nextInt(MT_numGenes); 

                                        // left side 

  for (int i = 0; i < crossPoint; i++)  

  { 

    MT_child1.SetGene(i, 

    MT_father.GetGene(i)); 

    MT_child2.SetGene(i, 

    MT_mother.GetGene(i)); 

  }  

                                  // right side  

  for (int i = crossPoint;  

     < MT_numGenes;i++)  

  { 

   MT_child1.SetGene(i,  
    MT_mother.GetGene(i)); 

   MT_child2.SetGene(i,  
    MT_father.GetGene(i)); 

  }    

  population.add(MT_posChild1,MT_child1); 

  population.add(MT_posChild2,MT_child2); 

  MT_posChild1 = MT_posChild1 + 2; 

  MT_posChild2 = MT_posChild2 + 2; 
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  MT_posFather = MT_posFather + 2; 

  MT_posMother = MT_posMother + 2;  

 }     

 return population; 

} 
The GA Class Having examined its subclasses, it is time to look at class GA, itself.  We 

never create an instance of class GA. GA exists only so that its member 
variables and methods can be inherited, as in Figure 28.3. Classes that may 
not be instantiated are called abstract. The classes higher in the hierarchy are 
called superclasses. Those lower in the hierarchy are called subclasses. Member 
variables and methods designated protected in a super class are 
available to its subclasses.  

GA contains the population of chromosomes, along with the various 
parameters that its subclasses need. The parameters are the size of the 
initial population, the size of the pared down population, the number of 
genes, the fraction of the total genes to be mutated, and the number of 
iterations before the program stops. The parameters are stored in a file 
manipulated through the classes Parameters, SetParams, and 
GetParams. We use object semantics to manipulate the files. Since file 
manipulation is not essential to a GA, we will not discuss it further. The 
class declaration GA, its member variables, and its constructor follow. 

public abstract class GA extends Object 

{  

  protected int GA_numChromesInit; 

  protected int GA_numChromes; 

  protected int GA_numGenes; 

  protected double GA_mutFact;    

  protected int  GA_numIterations; 

  protected ArrayList<Chromosome> GA_pop;  

 public GA(String ParamFile) 

 { 

  GetParams GP  = new GetParams(ParamFile); 

  Parameters P = GP.GetParameters(); 

  GA_numChromesInit = P.GetNumChromesI(); 

  GA_numChromes = P.GetNumChromes(); 

  GA_numGenes  = P.GetNumGenes(); 

  GA_mutFact = P.GetMutFact(); 

  GA_numIterations  = P.GetNumIterations(); 

  GA_pop = new ArrayList<Chromosome>(); 

    } 

           //Remaining methods implemented below. 

} 

The first two lines of the constructor create the objects necessary to read 
the parameter files. The succeeding lines, except the last, read the file and 
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store the results in class GA’s members variables. The final line creates the 
data structure that is to house the population. Since an ArrayList is an 
expandable collector, there is no need to fix the size of the array in 
advance. 

Class GA can do all of those things common to all of its subclasses. Unless 
you are a very careful designer, odds are that you will not know what is 
common to all of the subclasses until you start building prototypes. Object-
oriented techniques accommodate an iterative design process quite nicely. 
As you discover more methods that can be shared across subclasses, simply 
push them up a level to the superclass and recompile the system. 

Superclass GA performs general housekeeping tasks along with work 
common to all its subclasses. Under housekeeping tasks, we want a super 
class GA to display the entire population, its parameters, a chromosome, 
and the best chromosome within the population. We also might want it to 
tidy up the population by removing those chromosomes that will play no 
part in evolution. This requires a little explanation. Two of the parameters 
are GA_numChromesInit and GA_numChromes. Performance of a 
GA is sometimes improved if we initially generate more chromosomes 
than are used in the GA itself (Haupt and Haupt 1998). The first task, then, 
is to winnow down the number of chromosomes from the number initially 
generated (GA_numChromesInit) to the number that will be used 
(GA_numChromes).  

Under shared tasks, we want the superclass GA to create, rank, and mutate 
the population.  The housekeeping tasks are very straightforward. The 
shared method that initializes the population follows: 

protected void InitPop() 

{ 

  Random rnum = new Random(); 

 char letter; 

 for (int index = 0;  

   index < GA_numChromesInit; index++) 

 {  

  Chromosome Chrom =  

   new Chromosome(GA_numGenes);     

   for (int j = 0; j < GA_numGenes; j++) 

  {  

   letter = (char)(rnum.nextInt(26) + 97);  

    Chrom.SetGene(j,letter); 

  } 

  Chrom.SetCost(0); 

  GA_pop.add(Chrom); 

 } 

} 

Initializing the population is clear enough, though it does represent a 
design decision. We use a nested for loop to create and initialize all genes 
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within a chromosome and then to add the chromosomes to the population. 
Notice the use of Java’s pseudo-random number generator. In keeping 
with the object-oriented design, Random is a class with associated 
methods.  rnum.nextInt(26) generates a pseudo-random number in 
the range [0..25]. The design decision is to represent genes as characters. 
This is not as general as possible, an issue mentioned earlier and addressed 
in the exercises. We add 97 to the generated integer, because the ASCII 
position of ‘a’ is 97.  Consequently, we transform the generated integer to 
characters in the range [‘a’..’z’].    

Ranking the population, shown next, is very simple using the sort 
method that is part of the static class, Collections. A static class is 
one that exists to provide services to other classes. In this case, the 
methods in Collections operate on and return classes that implement 
the Collection Interface. An interface in Java is a set of specifications that 
implementing classes must fulfill. It would have been possible to design GA 
as an Interface class, though the presence of common methods among 
specific genetic algorithms made the choice of GA as a superclass a more 
intuitively clear design. Among the many classes that implement the 
methods specified in the Collection interface is ArrayList, the class we 
have chosen to represent the population of chromosomes. 

protected void SortPop() 

{ 

 Collections.sort(GA_pop, new CostComparator()); 

} 

private class CostComparator  

 implements Comparator <Chromosome> 

{ 

  int result; 

  public int compare(Chromosome obj1,  

  Chromosome obj2) 

  { 

  result = new Integer(obj1.GetCost()). 

   compareTo(new Integer(obj2.GetCost())); 

     return result;      

  } 

 } 

Collections.sort requires two arguments, the object to be sorted—
the ArrayList containing the population—and the mechanism that will 
do the sorting: 

Collections.sort(GA_pop, new CostComparator()); 

The second argument creates an instance of a helper class that implements 
yet another interface class, this time the Comparator interface. The second 
object is sometimes called the comparator object. To implement the 
Comparator interface we must specify the type of the objects to be 
compared—class Chromosome, in this case—and implement its 
compare method. This method takes two chromosomes as arguments, 
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uses the method GetCost to extract the cost from the chromosome, and 
the compareTo method of the Integer wrapper class to determine which 
of the chromosomes costs more. In keeping with OO, we give no 
consideration to the specific algorithm that Java uses. Java documentation 
guarantees only that the Comparator class “imposes a total ordering on 
some collection of objects” (Interface Comparator 2007). 

Mutation is the last of the three shared methods that we will consider. 
The fraction of the total number of genes that are to be mutated per 
generation is a design parameter. The fraction of genes mutated depends 
on the size of the population, the number of genes per chromosome, and 
the fraction of the total genes to mutate. For each of the mutations, we 
randomly choose a gene within a chromosome, and randomly choose a 
mutated value. There are two things to notice.  First, we never mutate our 
best chromosome. Second, the mutation code in GA is specific to genetic 
algorithms where genes may be reasonably represented as characters. The 
code for Mutation may be found on the Chapter 28 code library. 

             28.4 Conclusion: Complex Problem Solving and Adaptation 

 In this chapter we have shown how Darwin’s observations on speciation 
can be adapted to complex problem solving. The GA, like other AI 
techniques, is particularly suited to those problems where an optimal 
solution may be computationally intractable. Though the GA might 
stumble upon the optimal solution, odds are that computing is like nature 
in one respect.   Solutions and individuals must be content with having 
solved the problem of adaptation only well enough to pass their 
characteristics into the next generation. The extended example, 
WordGuess, was a case in which the GA happens upon an exact 
solution.  (See the code library for sample runs). This was chosen for ease 
of exposition. The exercises ask you to develop a GA solution to a known 
NP-Complete problem. 

We have implemented the genetic algorithm using object-oriented 
programming techniques, because they lend themselves to capturing the 
generality of the GA. Java was chosen as the programming language, both 
because it is widely used and because its syntax in the C/C++ tradition 
makes it readable to those with little Java or OO experience. 

As noted, we have not discussed the classes SetParams, GetParams, 
and Parameters mentioned in Section 28.3. These classes write to and 
read from a file of design parameters. The source code for them can be 
found in the auxiliary materials. Also included are instructions for using the 
parameter files, and instructions for exercising WordGuess. 

Chapter 28 was jointly written with Paul De Palma, Professor of Computer 
Science at Gonzaga University, Spokane Washington. 

 Exercises 

 1. The traveling salesperson problem is especially good to exercise the GA, 
because it is possible to compute bounds for it.  If the GA produces a 
solution that falls within these bounds, the solution, while probably not 
optimal, is reasonable. See Hoffman and Wolfe (1985) and Overbay, et al. 
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(2007) for details. The problem is easily stated. Given a collection of cities, 
with known distances between any two, a tour is a sequence of cities that 
defines a start city, C, visits every city once and returns to C. The optimal 
tour is the tour that covers the shortest distances. Develop a genetic 
algorithm solution for the traveling sales person problem.  Create, at least, 
two new classes TSP, derived from GA, and TSPtst that sets the 
algorithm in motion. See comments on mating algorithms for the traveling 
salesperson problem in Luger (2009, Section 12.1.3). 

2. Implement the Tournament pairing method of the class Pair.  
Tournament chooses a subset of chromosomes from the population.  The 
most fit chromosome within this subset becomes Parent A. Do the same 
thing again, to find its mate, Parent B. Now you have a breeding pair. 
Continue this process until we have as many breeding pairs as we need. 
Tournament is described in detail in Haupt and Haupt (1998). Does 
WordGuess behave differently when Tournament is used? 

3. As it stands, GA runs under command-line Unix/Linux. Use the 
javax.swing package to build a GUI that allows a user to set the 
parameters, run the program, and examine the results. 

4. Transform the java application code into a java applet. This applet 
should allow a web-based user to choose the GA to run (either 
WordGuess or TSP), the pairing algorithm to run (Top-Down or 
Tournament), and to change the design parameters    

5. WordGuess does not make use of the full generality provided by 
object-oriented programming techniques. A more general design would not 
represent genes as characters. One possibility is to provide several 
representational classes, all inheriting from a modified GA and all being 
super classes of specific genetic algorithm solutions. Thus we might have 
CHAR_GA inheriting from GA and WordGuess inheriting from CHAR-
GA. Another possibility is to define chromosomes as collections of genes 
that are represented by variables of class Object.  Using these, or other, 
approaches, modify GA so that it is more general. 

6. Develop a two-point crossover method to be included in class Mate. 
For each breeding pair, randomly generate two crossover points. Parent A 
contributes its genes before the first crossover and after the second to 
Child A. It contributes its genes between the crossover points to Child B. 
Parent B does just the opposite. See Haupt and Haupt (1998) for still other 
possibilities. 

 

 


