
389

 28 Genetic and Evolutionary Computing

Chapter

Objectives
A brief introduction to the genetic algorithms
 Genetic operators include
 Mutation
 Crossover
An example GA application worked through
 The WordGuess problem
Appropriate object hierarchy created
Generalizable to other GA applications
Exercises emphasize GA interface design

Chapter
Contents

28.1 Introduction
28.2 The Genetic Algorithm: A First Pass
28.3 A GA Implementation in Java
28.4 Conclusion: Complex Problem Solving and Adaptation

 28.1 Introduction

 The genetic algorithm (GA) is one of a number of computer programming
techniques loosely based on the idea of natural selection. The idea of
applying principles of natural selection to computing is not new. By 1948,
Alan Turing proposed “genetical or evolutionary search” (Turing 1948).
Less than two decades later, H.J. Bremmermann performed computer
simulations of “optimization through evolution and recombination”
(Eiben and Smith 1998). It was John Holland who coined the term, genetic
algorithm (Holland 1975). However, the GA was not widely studied until
1989, when D.E. Goldberg showed that it could be used to solve a
significant number of difficult problems (Goldberg 1989). Currently, many
of these threads have come together under the heading evolutionary computing
(Luger 2009, Chapter 12).

 28.2 The Genetic Algorithm: A First Pass

 The Genetic Algorithm is based loosely on the concept of natural
selection. Individual members of a species who are better adapted to a
given environment reproduce more successfully. They pass their
adaptations on to their offspring. Over time, individuals possessing the
adaptation form a new species that is particularly suited to the
environment. The genetic algorithm applies the metaphor of natural
selection to optimization problems. No claim is made about its biological
accuracy, although individual researchers have proposed mechanisms both
with and without a motivating basis from nature.

A candidate solution for a genetic algorithm is often called a chromosome.
The chromosome is composed of multiple genes. A collection of

390 Part IV: Programming in Java

chromosomes is called a population. The GA randomly generates an initial
population of chromosomes, which are then ranked according to a fitness
function (Luger 2009, Section 12.1).

Consider an example drawn from structural engineering. Structural
engineers make use of a component known as a truss. Trusses come in
many varieties, the simplest of which should be familiar to anyone who has
noticed the interconnected triangular structures found in bridges and
cranes. Figure 28.1 is an example of the canonical 64-bar truss (Ganzerli et
al. 2003), which appears in the civil engineering literature on optimization.
The arrows are loads, expressed in a unit known as a Kip. Engineers
would like to minimize the volume of a truss, taken as the cross-sectional
area of the bars multiplied by their length.

To solve this problem using a GA, we first randomly generate a population
of trusses. Some of these will stand up under a given load, some will not.
Those that fail to meet the load test are assigned a severe penalty. The
ranking in this problem is based on volume. The smaller the truss volume,
after any penalty has been assigned, the more fit the truss. Only the fittest
individuals are selected for reproduction. It has been shown that the truss
design problem is NP-Complete (Overbay et al. 2006). Engineers have
long-recognized the difficulty of truss design, most often developing good
enough solutions with the calculus-based optimization techniques available
to them (Ganzerli et al. 2003).

By the late nineties, at least two groups were applying genetic algorithms to
very large trusses and getting promising results (Rajeev and
Krishnamoorthy 1997), (Ghasemi et al. 1999). Ganzerli et al. (2003) took
this work a step further by using genetic algorithms to optimize the 64-bar
truss with the added complexity of load uncertainty. The point here is not
simply that the GA is useful in structural engineering, but that it has been
applied in hundreds of ways in recent years, structural engineering being an
especially clear example. A number of other examples, including the
traveling salesperson and SAT problems are presented in Luger (2009,
Section 12.1). The largest venue for genetic algorithm research is The
Genetic and Evolutionary Computation Conference (GECCO 2007). Held in a
different city each summer, the papers presented range from artificial life
through robotics to financial and water quality systems.

Despite the breadth of topics addressed, the basic outline for genetic
algorithm solvers across application domains is very similar. Search
through the problem space is guided by the fitness-function. Once the fitness-
function is designed, the GA traverses the space over many iterations,
called generations, stopping only when some pre-defined convergence
criterion is met. Further, the only substantial differences between one
application of the GA and the next is the representation of the
chromosome for the problem domain and the fitness function that is
applied to it. This lends itself very nicely to an object-oriented
implementation that can be easily generalized to multiple problems. The
technique is to build a generic GA class with specific implementations as
subclasses.

 Chapter 28 Genetic and Evolutionary Computing 391

WordGuess
Example

Consider a simple problem called WordGuess (Haupt and Haupt 1998). The
user enters a target word at the keyboard. The GA guesses the word. In
this case, each letter is a gene, each word a chromosome, and the total
collection of words is the population. To begin, we randomly generate a
sequence of chromosomes of the desired length. Next, we rank the
generated chromosomes for fitness. A chromosome that is identical with
the target has a fitness of zero. A chromosome that differs in one letter has
a fitness of 1 and so on. It is easy to see that the size of the search space
for WordGuess increases exponentially with the length of the word. In the
next few sections, we will develop an object-oriented solution to this
problem.

Suppose we begin with a randomly generated population of 128 character
strings. After ranking them, we immediately eliminate the half that is least
fit. Of the 64 remaining chromosomes, the fittest 32 form 16 breeding
pairs. If each pair produces 2 offspring, the next generation will consist of
the 32 parents plus the 32 children.

Figure 28.1 A system of trusses to be optimized with a set of genetic

operators.

Having decided who may reproduce, we mate them. The GA literature is
filled with clever mating strategies, having more or less biological
plausibility. We consider two, TopDown and Tournament. In TopDown, the
fittest member of the population mates with the next most fit and so on,
until the breeding population is exhausted. Tournament is a bit more
complex, and slightly more plausible (Haupt and Haupt 1998). Here we
choose a subset of chromosomes from the breeding population. The fittest
chromosome within this subset becomes Parent A. We do the same thing
again, to find its mate, Parent B. Now we have a breeding pair. We
continue with this process until we have created as many breeding pairs as
we need.

2 4 6 8

 1 3 5 7

 16 24 26 28

 15 23 25 27

 18

 20

 22

 17

 19

 21

 10

 12

 14

 9

 11

 13

 100 K 100 K

 70 K

 70 K

 20 K

 20 K

392 Part IV: Programming in Java

Mating is how each chromosome passes its genes to future generations.
Since mating is an attempt to simulate (and simplify) recombinant DNA,
many authors refer to it as recombination (Eiben and Smith 2003). As with
pairing, many techniques are available. WordGuess uses a single technique
called Crossover. Recall that each chromosome consists of length(chromosome)
genes. The most natural data structure to represent a chromosome is an
array of length(chromosome) positions. A gene—in this case an alphabetic
character—is stored in each of these positions. Crossover works like this:

1. Generate a random number n, 0 <= n <
length(chromosome). This is called the Crossover Point.

2. Parent A passes its genes in positions 0 … n to Child 1.

3. Parent B passes its genes in positions 0 … n to Child 2.

4. Parent A passes it genes in positions n + 1 …
length(chromosome – 1) to the corresponding positions in
Child 2.

5. Parent B passes its genes in positions n + 1 …
length(chromosome – 1) to the corresponding positions in
Child 1

Figure 28.2 illustrates mating with n = 4. The parents, PA and PB produce
the two children CA and CB.

After the reproducing population has been selected, paired, and mated, the
final ingredient is the application of random mutations. The importance of
random mutation in nature is easy to see. Favorable (as well as
unfavorable!) traits have to arise before they can be passed on to offspring.
This happens through random variation, caused by any number of natural
mutating agents. Chemical mutagens and radiation are examples. Mutation
guarantees that new genes are introduced into the gene pool. Its practical
effect for the GA is to reduce the probability that the algorithm will
converge on a local minimum. The percentage of genes subject to mutation
is a design parameter in the solution process.

The decision of when to stop producing new generations is the final
component of the algorithm. The simplest possibility, the one used in
WordGuess, is to stop either after the GA has guessed the word or 1000
generations have passed. Another halting condition might be to stop when
some parameter P percent of the population is within Q standard
deviations of the population mean.

Figure 28.2 Recombination with crossover at the point n = 4.

PA: CHIPOLTE PB: CHIXLOTI

CA: CHIPLOTI CB: CHIXOLTE

 Chapter 28 Genetic and Evolutionary Computing 393

The entire process can be compactly expressed through the while-loop:
GA(population)

{

 Initialize(population);

 ComputeCost(population);

 Sort(population);

 while (not converged on acceptable solution)

 {

 Pair(population);

 Mate(population);

 Mutate(population);

 Sort(population);

 TestConvergence(population);

 }

}

28.3 A GA Implementation in Java

 WordGuess is written in the Java programming language with object-
oriented (OO) techniques developed to help manage the search
complexity. An OO software system consists of a set of interrelated
structures known as classes. Each class can perform a well-defined set of
operations on a set of well-defined operands. The operations are referred
to as methods, the operands as member variables, or just variables.

The Class
Structure

The classes interrelate in two distinct ways. First, classes may inherit
properties from one another. Thus, we have designed a class called GA. It
defines most of the major operations needed for a genetic algorithm.
Knowing that we want to adapt GA to the problem of guessing a word
typed at the keyboard, we define the class WordGuess. Once having
written code to solve a general problem, that code is available to more
specific instances of the problem. A hypothetical inheritance structure for
the genetic algorithm is shown in Figure 28.3, where the upward pointing
arrows are inheritance links. Thus, WordGuess inherits all classes and
variables defined for the generic GA.

Second, once defined, classes may make use of one another. This
relationship is called compositionality. GA contains several component classes:

• Chromosome is a representation of an individual population
member.

• Pair contains all pairing algorithms developed for the
system. By making Pair its own class, the user can add new
methods to the system without changing the core components
of the code.

• Mate contains all mating algorithms developed for the
system.

• SetParams, GetParams, and Parameters are
mechanisms to store and retrieve parameters.

394 Part IV: Programming in Java

• WordGuessTst sets the algorithm in motion.

Finally, class GA makes generous use of Java’s pre-defined classes to
represent the population, randomly generate chromosomes, and to handle
files that store both the parameters and an initial population. GA is
character-based. A Graphical User Interface (GUI) can be implemented
with Java’s facilities for GUIs and Event-Driven programming found in
the javax.swing package (see Exercise 28.3).

Figure 28.3 The inheritance hierarchy for implementing the GA.

The Class
Chromosome

The variables reflect what a class knows about itself. Class Chromosome
must know how many genes it has, its fitness, and have a representation
for its genes. The number of genes and the fitness of the chromosome can
be easily represented as integers. The representation of the genes poses a
design problem. For WordGuess, a character array works nicely. For an
engineering application, we might want the chromosome to be a vector of
floating point variables. The most general representation is to use Java’s
class Object and have specific implementations, like WordGuess,
define their own chromosomes (see Exercise 28.4).

The methods describe what a class does. Class Chromosome must be
able to set and return its fitness, set and return the number of its genes,
display its genes, and determine if it is equal to another chromosome. The
Java code that implements the class Chromosome follows.

public class Chromosome

{

 private int CH_numGenes;

 protected int CH_cost;

 private Object[] CH_gene;

 public Chromosome(int genesIn)

 {

 CH_numGenes = genesIn;

 CH_gene = new char[CH_numGenes];

 }

 Chapter 28 Genetic and Evolutionary Computing 395

 public int GetNumGenes()

 {

 return CH_numGenes;

 }

 public void SetCost(int cost)

 {

 CH_cost = cost;

 }

 public void SetGene(int index, Object value)

 {

 CH_gene[index] = value;

 }

 public boolean Equals(String target)

 {

 for (int i = 0; i < CH_numGenes; i++)

 if (CH_gene[i] != target.charAt(i))

 return false;

 return true;

 }

}
Classes Pair

and Mate
Chromosomes must be paired and mated. So that we can experiment with
more than a single pairing or mating algorithm, we group multiple versions
into classes Pair and Mate. Since pairing and mating are done over an
entire population, before we define Pair and Mate we must decide upon
a representation for the population. A population is a list of chromosomes.
Java’s built-in collection classes are contained in the java.util library
and known as the Java Collection Framework. Two classes, ArrayList and
LinkedList support list behavior. It is intuitively easy to conceive of a
population as an array of chromosomes. Accordingly, we use the class
ArrayList to define a population as follows:

ArrayList<Chromosome> GA_pop;

GA_pop = new ArrayList<Chromosome>();

The first line defines a variable, GA_pop as type ArrayList. The
second creates an instance of GA_pop.

WordGuess implements a single paring algorithm, TopDown.
Tournament pairing is left as an exercise. Pair has to know the
population that is to be paired and the number of mating pairs. Since only
half of the population is fit enough to mate, the number of mating pairs is
the population size divided by 4. Here we can see one of the benefits of
using pre-defined classes. ArrayList provides a method that returns the
size of the list. The code for Pair follows:

public class Pair

{

 private ArrayList<Chromosome> PR_pop;

396 Part IV: Programming in Java

 public Pair(ArrayList<Chromosome> population)

 {

 PR_pop = population;

 }

 public int TopDown()

 {

 return (PR_pop.size() / 4);

 }

}

Class Mate also implements a single algorithm, Crossover. It is slightly
more complex than Pair. To implement Crossover, we need four
chromosomes, one for each parent, and one for each child. We also need
to know the crossover point, as explained in Section 28.2, the number of
genes in a chromosome, and the size of the population. We now present
the member variables and the constructor for Mate:

public class Mate

{

 private Chromosome MT_father,

 MT_mother,

 MT_child1,

 MT_child2;

 private int MT_posChild1,

 MT_posChild2,

 MT_posLastChild,

 MT_posFather,

 MT_posMother,

 MT_numGenes,

 MT_numChromes;

 public Mate(ArrayList<Chromosome> population,

 int numGenes, int numChromes)

 {

 MT_posFather = 0;

 MT_posMother = 1;

 MT_numGenes = numGenes;

 MT_numChromes = numChromes;

 MT_posChild1 = population.size()/2;

 MT_posChild2 = MT_posChild1 + 1;

 MT_posLastChild = population.size() - 1;

 for (int i = MT_posLastChild;

 i >= MT_posChild1; i--)

 population.remove(i);

 MT_posFather = 0;

 MT_posMother = 1;

 Chapter 28 Genetic and Evolutionary Computing 397

 }
 // Remaining method implemented below.

}
Mate takes a population of chromosome as a parameter and returns a
mated population. The for-loop eliminates the least fit half of the
population to make room for the two children per breeding pair.

Crossover, the only other method in Mate, is presented next. It
implements the algorithm described in Section 28.2. Making use of the
Set/Get methods of Chromosome, Crossover blends the
chromosomes of each breeding pair. When mating is complete, the
breeding pairs are in the top half of the ArrayList, the children are in
the bottom half.

public ArrayList<Chromosome> Crossover(
 ArrayList<Chromosome> population, int numPairs)

{

 for (int j = 0; j < numPairs; j++)

 {

 MT_father = population.get(MT_posFather);

 MT_mother = population.get(MT_posMother);

 MT_child1 = new Chromosome(MT_numGenes);

 MT_child2 = new Chromosome(MT_numGenes);

 Random rnum = new Random();

 int crossPoint = rnum.nextInt(MT_numGenes);

 // left side

 for (int i = 0; i < crossPoint; i++)

 {

 MT_child1.SetGene(i,

 MT_father.GetGene(i));

 MT_child2.SetGene(i,

 MT_mother.GetGene(i));

 }

 // right side

 for (int i = crossPoint;

 < MT_numGenes;i++)

 {

 MT_child1.SetGene(i,
 MT_mother.GetGene(i));

 MT_child2.SetGene(i,
 MT_father.GetGene(i));

 }

 population.add(MT_posChild1,MT_child1);

 population.add(MT_posChild2,MT_child2);

 MT_posChild1 = MT_posChild1 + 2;

 MT_posChild2 = MT_posChild2 + 2;

398 Part IV: Programming in Java

 MT_posFather = MT_posFather + 2;

 MT_posMother = MT_posMother + 2;

 }

 return population;

}
The GA Class Having examined its subclasses, it is time to look at class GA, itself. We

never create an instance of class GA. GA exists only so that its member
variables and methods can be inherited, as in Figure 28.3. Classes that may
not be instantiated are called abstract. The classes higher in the hierarchy are
called superclasses. Those lower in the hierarchy are called subclasses. Member
variables and methods designated protected in a super class are
available to its subclasses.

GA contains the population of chromosomes, along with the various
parameters that its subclasses need. The parameters are the size of the
initial population, the size of the pared down population, the number of
genes, the fraction of the total genes to be mutated, and the number of
iterations before the program stops. The parameters are stored in a file
manipulated through the classes Parameters, SetParams, and
GetParams. We use object semantics to manipulate the files. Since file
manipulation is not essential to a GA, we will not discuss it further. The
class declaration GA, its member variables, and its constructor follow.

public abstract class GA extends Object

{

 protected int GA_numChromesInit;

 protected int GA_numChromes;

 protected int GA_numGenes;

 protected double GA_mutFact;

 protected int GA_numIterations;

 protected ArrayList<Chromosome> GA_pop;

 public GA(String ParamFile)

 {

 GetParams GP = new GetParams(ParamFile);

 Parameters P = GP.GetParameters();

 GA_numChromesInit = P.GetNumChromesI();

 GA_numChromes = P.GetNumChromes();

 GA_numGenes = P.GetNumGenes();

 GA_mutFact = P.GetMutFact();

 GA_numIterations = P.GetNumIterations();

 GA_pop = new ArrayList<Chromosome>();

 }

 //Remaining methods implemented below.

}

The first two lines of the constructor create the objects necessary to read
the parameter files. The succeeding lines, except the last, read the file and

 Chapter 28 Genetic and Evolutionary Computing 399

store the results in class GA’s members variables. The final line creates the
data structure that is to house the population. Since an ArrayList is an
expandable collector, there is no need to fix the size of the array in
advance.

Class GA can do all of those things common to all of its subclasses. Unless
you are a very careful designer, odds are that you will not know what is
common to all of the subclasses until you start building prototypes. Object-
oriented techniques accommodate an iterative design process quite nicely.
As you discover more methods that can be shared across subclasses, simply
push them up a level to the superclass and recompile the system.

Superclass GA performs general housekeeping tasks along with work
common to all its subclasses. Under housekeeping tasks, we want a super
class GA to display the entire population, its parameters, a chromosome,
and the best chromosome within the population. We also might want it to
tidy up the population by removing those chromosomes that will play no
part in evolution. This requires a little explanation. Two of the parameters
are GA_numChromesInit and GA_numChromes. Performance of a
GA is sometimes improved if we initially generate more chromosomes
than are used in the GA itself (Haupt and Haupt 1998). The first task, then,
is to winnow down the number of chromosomes from the number initially
generated (GA_numChromesInit) to the number that will be used
(GA_numChromes).

Under shared tasks, we want the superclass GA to create, rank, and mutate
the population. The housekeeping tasks are very straightforward. The
shared method that initializes the population follows:

protected void InitPop()

{

 Random rnum = new Random();

 char letter;

 for (int index = 0;

 index < GA_numChromesInit; index++)

 {

 Chromosome Chrom =

 new Chromosome(GA_numGenes);

 for (int j = 0; j < GA_numGenes; j++)

 {

 letter = (char)(rnum.nextInt(26) + 97);

 Chrom.SetGene(j,letter);

 }

 Chrom.SetCost(0);

 GA_pop.add(Chrom);

 }

}

Initializing the population is clear enough, though it does represent a
design decision. We use a nested for loop to create and initialize all genes

400 Part IV: Programming in Java

within a chromosome and then to add the chromosomes to the population.
Notice the use of Java’s pseudo-random number generator. In keeping
with the object-oriented design, Random is a class with associated
methods. rnum.nextInt(26) generates a pseudo-random number in
the range [0..25]. The design decision is to represent genes as characters.
This is not as general as possible, an issue mentioned earlier and addressed
in the exercises. We add 97 to the generated integer, because the ASCII
position of ‘a’ is 97. Consequently, we transform the generated integer to
characters in the range [‘a’..’z’].

Ranking the population, shown next, is very simple using the sort
method that is part of the static class, Collections. A static class is
one that exists to provide services to other classes. In this case, the
methods in Collections operate on and return classes that implement
the Collection Interface. An interface in Java is a set of specifications that
implementing classes must fulfill. It would have been possible to design GA
as an Interface class, though the presence of common methods among
specific genetic algorithms made the choice of GA as a superclass a more
intuitively clear design. Among the many classes that implement the
methods specified in the Collection interface is ArrayList, the class we
have chosen to represent the population of chromosomes.

protected void SortPop()

{

 Collections.sort(GA_pop, new CostComparator());

}

private class CostComparator

 implements Comparator <Chromosome>

{

 int result;

 public int compare(Chromosome obj1,

 Chromosome obj2)

 {

 result = new Integer(obj1.GetCost()).

 compareTo(new Integer(obj2.GetCost()));

 return result;

 }

 }

Collections.sort requires two arguments, the object to be sorted—
the ArrayList containing the population—and the mechanism that will
do the sorting:

Collections.sort(GA_pop, new CostComparator());

The second argument creates an instance of a helper class that implements
yet another interface class, this time the Comparator interface. The second
object is sometimes called the comparator object. To implement the
Comparator interface we must specify the type of the objects to be
compared—class Chromosome, in this case—and implement its
compare method. This method takes two chromosomes as arguments,

 Chapter 28 Genetic and Evolutionary Computing 401

uses the method GetCost to extract the cost from the chromosome, and
the compareTo method of the Integer wrapper class to determine which
of the chromosomes costs more. In keeping with OO, we give no
consideration to the specific algorithm that Java uses. Java documentation
guarantees only that the Comparator class “imposes a total ordering on
some collection of objects” (Interface Comparator 2007).

Mutation is the last of the three shared methods that we will consider.
The fraction of the total number of genes that are to be mutated per
generation is a design parameter. The fraction of genes mutated depends
on the size of the population, the number of genes per chromosome, and
the fraction of the total genes to mutate. For each of the mutations, we
randomly choose a gene within a chromosome, and randomly choose a
mutated value. There are two things to notice. First, we never mutate our
best chromosome. Second, the mutation code in GA is specific to genetic
algorithms where genes may be reasonably represented as characters. The
code for Mutation may be found on the Chapter 28 code library.

 28.4 Conclusion: Complex Problem Solving and Adaptation

 In this chapter we have shown how Darwin’s observations on speciation
can be adapted to complex problem solving. The GA, like other AI
techniques, is particularly suited to those problems where an optimal
solution may be computationally intractable. Though the GA might
stumble upon the optimal solution, odds are that computing is like nature
in one respect. Solutions and individuals must be content with having
solved the problem of adaptation only well enough to pass their
characteristics into the next generation. The extended example,
WordGuess, was a case in which the GA happens upon an exact
solution. (See the code library for sample runs). This was chosen for ease
of exposition. The exercises ask you to develop a GA solution to a known
NP-Complete problem.

We have implemented the genetic algorithm using object-oriented
programming techniques, because they lend themselves to capturing the
generality of the GA. Java was chosen as the programming language, both
because it is widely used and because its syntax in the C/C++ tradition
makes it readable to those with little Java or OO experience.

As noted, we have not discussed the classes SetParams, GetParams,
and Parameters mentioned in Section 28.3. These classes write to and
read from a file of design parameters. The source code for them can be
found in the auxiliary materials. Also included are instructions for using the
parameter files, and instructions for exercising WordGuess.

Chapter 28 was jointly written with Paul De Palma, Professor of Computer
Science at Gonzaga University, Spokane Washington.

 Exercises

 1. The traveling salesperson problem is especially good to exercise the GA,
because it is possible to compute bounds for it. If the GA produces a
solution that falls within these bounds, the solution, while probably not
optimal, is reasonable. See Hoffman and Wolfe (1985) and Overbay, et al.

402 Part IV: Programming in Java

(2007) for details. The problem is easily stated. Given a collection of cities,
with known distances between any two, a tour is a sequence of cities that
defines a start city, C, visits every city once and returns to C. The optimal
tour is the tour that covers the shortest distances. Develop a genetic
algorithm solution for the traveling sales person problem. Create, at least,
two new classes TSP, derived from GA, and TSPtst that sets the
algorithm in motion. See comments on mating algorithms for the traveling
salesperson problem in Luger (2009, Section 12.1.3).

2. Implement the Tournament pairing method of the class Pair.
Tournament chooses a subset of chromosomes from the population. The
most fit chromosome within this subset becomes Parent A. Do the same
thing again, to find its mate, Parent B. Now you have a breeding pair.
Continue this process until we have as many breeding pairs as we need.
Tournament is described in detail in Haupt and Haupt (1998). Does
WordGuess behave differently when Tournament is used?

3. As it stands, GA runs under command-line Unix/Linux. Use the
javax.swing package to build a GUI that allows a user to set the
parameters, run the program, and examine the results.

4. Transform the java application code into a java applet. This applet
should allow a web-based user to choose the GA to run (either
WordGuess or TSP), the pairing algorithm to run (Top-Down or
Tournament), and to change the design parameters

5. WordGuess does not make use of the full generality provided by
object-oriented programming techniques. A more general design would not
represent genes as characters. One possibility is to provide several
representational classes, all inheriting from a modified GA and all being
super classes of specific genetic algorithm solutions. Thus we might have
CHAR_GA inheriting from GA and WordGuess inheriting from CHAR-
GA. Another possibility is to define chromosomes as collections of genes
that are represented by variables of class Object. Using these, or other,
approaches, modify GA so that it is more general.

6. Develop a two-point crossover method to be included in class Mate.
For each breeding pair, randomly generate two crossover points. Parent A
contributes its genes before the first crossover and after the second to
Child A. It contributes its genes between the crossover points to Child B.
Parent B does just the opposite. See Haupt and Haupt (1998) for still other
possibilities.

